Skip to main content
Log in

Wear properties of rheo-squeeze cast aluminum matrix reinforced with nano particulates

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

There are many approaches to fabricate nanoparticles reinforced aluminum matrix composites. However, uniform distribution of nanoparticle within aluminum matrix remains a difficult challenge. In this study, a novel method is used by taking the advantages from squeeze casting of semi-solid aluminum slurry combined with electromagnetic field to refine the microstructure of the primary Al and eutectic Si phase, plus to obtain uniform distribution nano alumina particles in the aluminum matrix. It is noted that electromagnetic field plays an important role in the formation of non-dendritic primary α-Al particles and a great microstructure refinement occurs as a consequence of the pressure application. It can be seen that the increase in electromagnetic field causes smaller and rounder primary α-Al particles. A comparative study on abrasive wear behavior of nano Al2O3 reinforced aluminum metal matrix composite has been carried out in the present investigation. The mass loss of the pin was used to study the effect of Al2O3 addition on the wear resistance of the composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, S., Panwar, R., and Pandey, O., Metall. Mater. Trans. A, 2013, vol. 44, p. 1548.

    Article  Google Scholar 

  2. Shabani, M. and Mazahery, A., JOM, 2011, vol. 63, p. 132.

    Article  Google Scholar 

  3. Mazahery, A. and Shabani, M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 817.

    Article  Google Scholar 

  4. Shabani, M., Mazahery, A., Davami, P., and Razavi, M., Int. J. Cast Met. Res., 2012, vol. 25, p. 53.

    Article  Google Scholar 

  5. Borgonovo, C., Apelian, D., and Makhlouf, M., JOM, 2011, vol. 63, p. 57.

    Google Scholar 

  6. Mazahery, A. and Shabani, M.O., Mater. Sci. Technol., 2013, vol. 29, p. 423.

    Article  Google Scholar 

  7. Shabani, M.O., Tofigh, A.A., Heydari, F., and Mazahery, A., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, p. 244.

    Article  Google Scholar 

  8. Shabani, M., Mazahery, A., Bahmani, A., Davami, P., and Varahram, N., Kovove Mater.-Met. Mater., 2011, vol. 49, p. 253.

    Google Scholar 

  9. Mazahery, A., Shabani, M., Rahimipour, M., et al., Kovove Mater.-Met. Mater., 2012, vol. 50, p. 107.

    Google Scholar 

  10. Shabani, M. and Mazahery, A., Trans Indian Inst. Met., 2013, vol. 66, p. 65.

    Article  Google Scholar 

  11. Shabani, M. and Mazahery, A., Arch. Met. Mater., 2011, vol. 56, p. 671.

    Google Scholar 

  12. Mazahery, A. and Shabani, M. O., Metall. Mater. Trans. A, 2012, vol. 43, p. 5279.

    Article  Google Scholar 

  13. Shabani, M., Alizadeh, M., and Mazahery, A., Fatigue Fract. Eng. Mater. Struct., 2011, vol. 34, p. 1035.

    Article  Google Scholar 

  14. Mazahery, A. and Shabani, M. O., Ceram. Int., 2012, vol. 38, p. 1887.

    Article  Google Scholar 

  15. Shabani, M.O. and Mazahery, A., Ceram. Int., 2013, vol. 39, p. 1351.

    Article  Google Scholar 

  16. Mazahery, A. and Shabani, M., JOM, 2014, vol. 66, p. 726.

    Article  Google Scholar 

  17. Tofigh, A.A. and Shabani, M.O., Acta Metall. Slov., 2013, vol. 19, p. 94.

    Google Scholar 

  18. Shabani, M., Mazahery, A., Rahimipour, M., et al., Kovove Mater.-Met. Mater., 2012, vol. 50, p. 25.

    Google Scholar 

  19. Tofigh, A.A., Rahimipour, M.R., Shabani, M.O., et al., J. Manuf. Process., 2013, vol. 15, p. 518.

    Article  Google Scholar 

  20. Lo, J.S.H., Dionne, S., Dignard-Bailey, L., et al., in Processing of Ceramic and Metal Matrix Composites, Mostaghaci, H., Ed., Oxford, UK: Pergamon, 1989.

  21. Mazahery, A. and Shabani, M., Trans Indian Inst. Met., 2013, vol. 66, p. 171.

    Article  Google Scholar 

  22. Shabani, M. and Mazahery, A., Tribol. Ind., 2012, vol. 34, p. 166.

    Google Scholar 

  23. Kumar, S., Panwar, R.S., and Pandey, O.P., Ceram. Int., 2013, vol. 39, p. 6333.

    Article  Google Scholar 

  24. Rahimipour, M., Tofigh, A., Mazahery, A., and Shabani, M., Tribol.-Mater., Surf. Interfaces, 2013, vol. 7, p. 129.

    Article  Google Scholar 

  25. Mel’nikov, V.G., Prot. Met., 2005, vol. 41, no. 2, p. 154.

    Article  Google Scholar 

  26. Mazahery, A. and Shabani, M., Mater. Sci. Technol., 2013, vol. 28, p. 117.

    Google Scholar 

  27. Ravindran, P., Manisekar, K., Narayanasamy, R., and Narayanasamy, P., Ceram. Int., 2013, vol. 39, p. 1169.

    Article  Google Scholar 

  28. Mazahery, A. and Shabani, M., Trans. Indian Inst. Met., 2012, vol. 65, p. 145.

    Article  Google Scholar 

  29. Rahimipour, M., Tofigh, A., Shabani, M., and Davami, P., Tribol. Ind., 2014, vol. 36.

  30. Yang, X.-F., Ze, X.-B., Wang, H.-Y., and Wang, H., Ceram. Int., 2009, vol. 35, p. 3495.

    Article  Google Scholar 

  31. Tofigh, A., Rahimipour, M., Shabani, M., and Davami, P., J. Compos. Mater., 2015, vol. 49, no. 13, p. 1653.

    Article  Google Scholar 

  32. Shabani, M., Rahimipour, M., Tofigh, A., and Davami, P., Neural Comput. Appl., 2015, vol. 26, p. 899.

    Article  Google Scholar 

  33. Poletika, I.M., Krylova, T.A., Ivanov, Y.F., et al., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 221.

    Article  Google Scholar 

  34. Teker, T., Karatas, S., and Yilmaz, S., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 94.

    Article  Google Scholar 

  35. Mazahery, A. and Shabani, M., Russ. Met., 2011, vol. 2011, p. 699.

    Article  Google Scholar 

  36. Shabani, M.O. and Mazahery, A., Indian J. Eng. Mater. Sci., 2012, vol. 19, p. 129.

    Google Scholar 

  37. Tofigh, A.A. and Shabani, M.O., Ceram. Int., 2013, vol. 39, p. 7483.

    Article  Google Scholar 

  38. Mazahery, A. and Shabani, M.O., Powder Technol., 2013, vol. 249, p. 530.

    Article  Google Scholar 

  39. Ostad Shabani, M. and Mazahery, A., Ceram. Int., 2013, vol. 39, p. 5271.

    Article  Google Scholar 

  40. Mazahery, A., Shabani, M., and Elrefaei, A., Int. J. Damage Mech., 2014, vol. 23, p. 899.

    Article  Google Scholar 

  41. Rahimipour, M.R., Tofigh, A.A., Mazahery, A., and Shabani, M.O., Neural Comput. Appl., 2014, vol. 24, p. 1531.

    Article  Google Scholar 

  42. Zhu, H., Jia, C., Li, J., et al., Powder Technol., 2012, vol. 217, p. 401.

    Article  Google Scholar 

  43. Shabani, M.O., Tofigh, A.A., Rahimipour, M.R., et al., Mater. Tehnol., 2014, vol. 48, p. 459.

    Google Scholar 

  44. Mazahery, A., Shabani, M.O., Alizadeh, M., and Tofigh, A.A., J. Compos. Mater., 2013, vol. 47, no. 14, p. 1765.

    Article  Google Scholar 

  45. Rahimipour, M., Tofigh, A., Mazahery, A., and Shabani, M., Neural Comput. Appl., 2014, vol. 24, p. 1531.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ostad Shabani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, M.O., Heydari, F., Tofigh, A.A. et al. Wear properties of rheo-squeeze cast aluminum matrix reinforced with nano particulates. Prot Met Phys Chem Surf 52, 486–491 (2016). https://doi.org/10.1134/S2070205116030266

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116030266

Navigation